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Coefficient of restitution for one-dimensional harmonic solids

Anthony G. Basile
Department of Math and Natural Sciences, D’Youville College, Buffalo, New York 14201-1084

Randall S. Dumont
Department of Chemistry, McMaster University, Hamilton, Ontario, Canada L8S 4M1

~Received 18 June 1999!

Using a numerical algorithm based on the time evolution of normal modes, we calculate the coefficient of
restitution h for various one-dimensional harmonic solids colliding with a hard wall. We find that, for a
homogeneous chain,h51 in the thermodynamic limit. However, for a chain in which weaker springs are
introduced in the colliding front half,h remains significantly less than one even in the thermodynamic limit,
and the ‘‘lost’’ energy goes mostly into low frequency normal modes. An understanding of these results is
given in terms of how the energy is redistributed among the normal modes as the chain collides with the wall.
We then contrast these results with those for collisions of one-dimensional harmonic solids with a soft wall.
Using perturbation theory, we find thath51 for all harmonic chains in the extremely soft wall limit, but that
inelasticity grows with increasing chain size in contrast to hard wall collisions.

PACS number~s!: 45.10.2b, 45.50.Tn
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I. INTRODUCTION

Collisions have long been studied in physics and the
velopment of their dynamics has led to the formulation
numerous conservation laws. Historically, the conserva
of energy remained elusive because it holds only for syst
in which conservative forces act; yet, most macroscopic s
tems have some dissipative forces at work and so ten
‘‘loose’’ energy with time. Nonetheless, at the microscop
level, the forces holding ordinary matter together are elec
magnetic in nature and therefore conservative. Dissipatio
then understood as energy which was originally in a f
macroscopic degrees of freedom, but whichsomehowgets
diffused among many microscopic degrees of freedom as
interaction progresses. However, while it is easy to und
stand how conservative forces conserve energy, it is no
easy to see how they can dissipate it.

Recent studies of the scattering of thermal clusters fr
solid surfaces raise such questions@1–4#. These studies focu
on collisions with significant deposition of translational k
netic energy into internal modes, and concern themse
with collision-activated energy-threshold processes, such
chemical reactions of species imbedded in inert clusters
cluster evaporation and shattering. In connection to th
studies, in this paper we investigate the more elemen
question of the dynamical mechanism for internal ene
deposition, without the complications associated with~a! ini-
tial internal energy,~b! activation of threshold processes, a
~c! interactions between rotational and vibrational degree
freedom. To this end, we consider the coefficient of rest
tion of one dimensional harmonic solids initially at 0 K.

The literature’s treatment of the coefficient of restituti
is largely concerned with collisions of macroscopic bodi
In particular, there is a focus on the role of rotational dyna
ics, to the extent that some studies consider only rigid b
collisions @5#. In general, there is a reliance on simulati
based on a phenomenological description of the interac
between small elements within the colliding bodies wh
include intrinsically dissipative forces@6#. In contrast to
PRE 611063-651X/2000/61~2!/2015~9!/$15.00
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these studies, our approach here is to focus solely on con
vative translational to vibrational energy transfer, as a mo
for low energy microscopic cluster collisions.

The coefficient of restitution is introduced to measure
translational kinetic energy ‘‘lost’’ during a collision:

h5
Ka

Kb
, ~1!

whereKb andKa are the translational kinetic energies befo
and after the collision, respectively. Succinctly put then, o
question is this: If one maintains that at a sufficiently micr
scopic level the forces holding the solid together are con
vative, then no energy is lost during the collision and t
difference,Kb2Ka , must go into the internal degrees o
freedom of the elastic solid. What internal degrees of fr
dom are excited and how are they excited? Below, we
dress this question by considering the dynamics of one
mensional solids of identical point masses connected
harmonic springs which are made to collide with a hard
soft wall. While this model represents a strong idealizat
of real physical systems—in particular, it is one dimensio
and only takes into account harmonic interactions—it do
yield exact analytical solutions and so makes explicit at le
one mechanism for the dissipation of energy by conserva
forces.

Since our aim is to gain insight into howh varies with the
internal structure of the solid, we first investigate an ide
case in whichh51 and then see how deviation from it ca
lead to h,1. We show that the homogeneous chain,
which all the spring constants are equal@7#, hash51 in the
thermodynamic limit when it collides with a hard wall, whil
the introduction of a ‘‘cushion’’ in the form of weake
springs placed in the colliding front half of the chain gene
ally leads toh,1. Augmenting our numerical study with
heuristic analysis, we argue why this should be the case
arrive at some intuitive understanding of a mechanism
which energy can be dissipated by conservative forces.
then contrast hard wall collisions with soft wall collision
2015 ©2000 The American Physical Society
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2016 PRE 61ANTHONY G. BASILE AND RANDALL S. DUMONT
and conclude from our analysis that~1! all harmonic chains
haveh51 in the adiabatic~extremely soft wall! limit and
that ~2! inelasticity grows with increasing chain size, whic
is the opposite of hard wall collisions.

The remainder of this paper is organized as follows.
Sec. II, we present the details of our model for hard w
collisions and derive a method for solving its dynamics
time evolving the normal modes. In Sec. III, we present o
results for the homogeneous chain and give a heuristic an
sis of whyh51 in the thermodynamic limit. In Sec. IV, we
treat the cushioned chain and, in light of what was found
Sec. III, argue for howh,1 is obtained. In Sec. V, we
present our model for soft wall collisions and argue whyh
51 in the adiabatic limit, with inelasticity growing with in
creasing chain size. Finally, we close with some general
marks.

II. NORMAL MODE DYNAMICS OF ONE-DIMENSIONAL
HARMONIC SOLIDS: HARD WALL COLLISIONS

The Hamiltonian for a one dimensional harmonic solid
n identical point masses, interacting with a hard wall, can
written as

H5H01HI , ~2!

whereH0 represents the interaction of the point masses w
one another andHI represents the interaction of the cha
with the hard wall. The first term is given by

H05
m

2 (
i 51

n

ẋi
21

1

2 (
i 51

n21

ki~xi 112xi2a!2, ~3!

wherem, xi , and ẋi are the mass, position, and velocity
particle i, respectively. Particlesi and i 11 interact via a
harmonic potential with spring constant,ki , and have an
equilibrium spacing,a. The interaction with the hard wall a
x50 can be accounted for by lettingẋ1→2 ẋ1 whenever
x150. The effect ofHI on the equations of motion is give
below, but we note here thatHI does not change the tota
energy of the system, and so incorporates no dissipa
terms into Eq.~2!.

Next, we define the homogeneous limit of Eq.~3! as the
case whereki5k, for all i. The thermodynamic limit can
then be understood asn→`, with M5nm, K5k/n, and
A5na fixed. These relations guarantee that the massM,
spring constantK, and lengthA of the entire chain will re-
main finite as the limit is taken. The homogeneous chain
now be modified by letting some of theki differ from one
another. In this case, it is still possible to keep the ove
spring constant of the chain fixed in the thermodynamic lim
by insisting thatK51/( i 51

n21(1/ki) remain fixed.
In the absence ofHI , the equations of motion can b

obtained from Eq.~3! via the Hamiltonian formalism which
in matrix language, gives

yẄ52KyW , ~4!

whereyi5xi2( i 21)a, for i 51,2, . . . ,n, andK is a tridi-
agonal matrix which depends on theki ’s andm. Eq. ~4! can
be solved by a normal mode decomposition in whichK is
n
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t

diagonalized. Numerically, sinceK is a symmetric tridiago-
nal matrix, its diagonalization~eigenvalues plus eigenvec
tors! entails an ordern2 operation which, in the homoge
neous limit, reduces to simple analytical expressions. Tak
the eigenvalues and eigenvectors to bev j

2 and êj , respec-
tively, with j 51,2, . . . ,n labeling the normal modes, we ca
write

yW ~ t !5(
j 51

n

a j~ t !êj , ~5!

wherea j (t) obeysä j (t)1v j
2a j (t)50, and has solution,

a j~ t !5ReFCj

v j
exp~2 iv j t !G . ~6!

Here Cj5v jAj1 iB j , where Aj and Bj are real constants
independent of time. Written in this form, Eq.~6! holds even
for the center of mass~c.m.! mode,j 51, provided one treats
v1→01 as a limit. Eq. ~3! can now be written asE0

5( j 51
n Ej , where the energy in modej is given by

Ej5
1

2
mCjCj* , ~7!

and is independent of time. Recalling that the above w
derived in the absence of any interaction with the hard w
a nice interpretation now arises. The energy in any particu
normal mode remains constant during the time between
lisions of particlei 51 with the wall. However, once such
collision does occur, the total energy of the system does
change, but its distribution among the normal modes do
The question of how energy in a macroscopic degree of fr
dom is ‘‘lost’’ to the many microscopic internal degrees
freedom reduces, for our model, to an investigation into h
the energy gets redistributed among the normal modes a
collision progresses.

The interaction of particlei 51 with the hard wall can
now be added by modeling the impulse given by the wall
the particle with a delta function force. Suppose particlei
51 collides with the wall at timest5t1 ,t2 ,t3 , . . . . If im-
mediately before thepth collision this particle has velocity
ẋ1(tp

2), then immediately after, it has velocitynp5 ẋ1(tp
1)

52 ẋ1(tp
2), and the force exerted by the wall is given b

Fp52mnpd(t2tp). This changes the equation of motion fo
particle i 51 in Eq. ~4!, the other components being una
fected, and gives

yẄ52KyW12ĝ(
p

npd~ t2tp!, ~8!

where the sum is over all the collisions that particlei 51
makes with the hard wall, andĝ5(1,0,0, . . . ,0). Restricting
ourselves to a sufficiently small neighborhood oft5tp ,
a j (t) now obeysä j (t)1v j

2a j (t)52(ĝ•êj )npd(t2tp), and
has the solution

a j~ t !5ReFCj
~p21!

v j
exp@2 iv j~ t2tp21!#G , ~9!

for tp21,t,tp , and
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a j~ t !5ReFCj
~p21!

v j
exp@2 iv j~ t2tp21!#1

2inp~ ĝ•êj !

v j

3exp@2 iv j~ t2tp!#G , ~10!

for tp,t,tp11 . If we take Eq.~9! as the standard form fo
expressinga j (t) in terms ofCj , then a mapping is suggeste
which connects the value ofCj before thepth collision,
Cj

(p21) , to its value after,Cj
(p) :

Cj
~p!5Cj

~p21! exp~2 iv jDtp21!12inp~ ĝ•êj !, ~11!

where Dtp215tp2tp21 is the time the system takes t
evolve from the (p21)th to thepth collision. The terms in
Eq. ~11! are easily understood. The first term arises beca
we update the reference time in Eq.~9! from tp21 to tp with
each successive collision—it represents the advance in
phase ofCj

(p21) . But the second term is the boost given
the velocity by the collision. Unfortunately, to apply Eq.~11!
numerically requires not only the value ofCj

(p21) , but also
Dtp21 and np , which we do not havea priori. At leastnp

can be expressed in terms ofCj
(p21) using

np52 ẋ1~ tp
2!52ImF (

j 51

n

~ ĝ•êj !Cj
~p21! exp~2 iv jDtp21!G .

~12!

But, Dtp21 has no simple expression@8#, and must be ob-
tained as the solution to

y1~ tp!5ReF (
j 51

n
~ ĝ•êj !Cj

~p21!

v j
exp~2 iv jDtp21!G50.

~13!

A simple bracketing technique is sufficient to find the ze
since the approximate value ofDtp21 is known, as will be
discussed in the next section.

Now, only the initial conditions in Eq.~11! need to be
specified, and then the entire dynamics of the chain can
found by repeatedly applying the above mapping. The ini
value of Cj

(0) can be expressed in terms of the initial po
tions and velocities of the particlesAj

(0)5yW (0)•êj , Bj
(0)

5yẆ (0)•êj . If we initialize the chain att050 with all its
energy in the c.m. mode, that is, withyi(0)50, and ẏi(0)
52nc , thenCj

(0)52 incAn for j 51, and zero otherwise.
We checked the above algorithm against molecular

namics. The Euler-Cromer algorithm is both fast and ac
rate for this system @9#. Using a time step, Dt
5(0.001)Am/k, we find that the energy of the system
constant within an error margin of at most 0.05% for vario
n5100 chains—both homogeneous and not. Although b
molecular and normal mode dynamics involve an ordern2

operation to findh, and both lead to comparable results, t
latter is faster by a factor of about 20 and more accur
Error propagation occurs in molecular dynamics becaus
the unavoidable finite time step; whereas, every calcula
in normal mode dynamics can essentially be reduced to
chine accuracy.
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III. RESULTS FOR THE HOMOGENEOUS CHAIN:
HARD WALL COLLISIONS

For our numerical work, we take the mass, length, a
time scale to bem, a, anda/nc , respectively.~This amounts
to settingm5a5nc51 in our equations; however, to avoi
ambiguity, we leave these parameters explicit.! As expected
from a dimensional analysis,h is independent of all param
eters for the homogeneous chain, exceptn. In Fig. 1, we
present a log-log plot of (12h) versusn. For clarity, we
only plot the rangen53 to 50, but the same trend is evide
to n5104. Despite some oscillation, (12h) fits very well a
power law curveAn2b, with A'0.75 andb'0.68; and,
extrapolating, one finds thath→1 asn→`.

To gain insight into this result, we consider the details
the dynamics of a finite chain. Figure 2 shows the interact
of the n59, k58, homogeneous chain with the hard wa
First, we note thatDtp andnp remains remarkably constan
throughout the interaction, as can be seen in Fig. 3, wh
Dtp andnp are plotted as a function of the collision numbe

FIG. 1. The deviation ofh from unity as a function of chain size
for the homogeneous chain.

FIG. 2. The trajectories of the particles for then59, k58, ho-
mogeneous chain. The dashed lines indicate the approximate
sion between the compressed and uncompressed regions.~Reduce
units wherem5a5nc51.!
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p. As for longer chains, these only deviate significantly fro
their plateau values for the first and last collisions. The p
teau values are themselves rather insensitive ton. From its
value for n52, where it can be shown thatDtp5pAm/2k

'(2.2214)Am/k, Dtp gradually rises tolAm/k, with l
'2.2995; and similarly,np rises fromnc to knc , with k
'l/2'1.1498, asn→`. Further, we find that, the numbe
of times particle i 51 collides with the wall is f 'n/k
'(0.8697)n, and the time elapsed from the first to last co
lision is T5tp2t1'2nAm/k, asn→`.

Next, we note in Fig. 2 that a well definedfront separating
the compressed from the uncompressed region of the c
propagates up and down it at the speed of sound in the
dium ns5aAk/m. ~This is indicated with guidelines in Fig
2.! This long wavelength~low frequency! excitation is evi-
dent in Fig. 4~a! where we plotEj

(p) for p50 ~before any
collision! to p5 f 58 ~after the last!. There, we see that mos
of the energy lost by the c.m. mode is acquired by the low
frequency (j 52) mode during 0<p<4, and redeposited
into the c.m. mode during 4<p<8. However, some of the
energy does go into higher frequency modes, as is evide
Fig. 4~b!. Still, as is the case for thej 52 mode, most of this
energy is redeposited into the c.m. mode by the time
interaction ends, withE2

(p) havingalmostmade one complete
oscillation from E50 and back,E3

(p) having almost made
two, E4

(p) having almost made three, etc. This trend, how
ever, breaks down for largerj as is already becoming appa
ent for j 54. Figure 5 shows the energy trapped in the int
nal modes after the last collision as a function of frequen
for then51001,k51000, homogeneous chain. We note th
most of the ‘‘lost’’ energy resides in the lower frequen
modes, in the approximate range 0,v,n1/3Ak/m.

More insight into the above results can be obtained if t
simplifying assumptions are made in our analytical expr
sions. If we assume, in accordance with our numerical
sults, thatDtp5Dt andnp5n are constant for allp, then the
mapping in Eq.~11! can be written in closed form, and Eq

FIG. 3. The intercollision time intervalsDtp and the collision
velocity np as a function of collision numberp for the n59, k58,
homogeneous chain. The stars indicate reduced unitsDtp*
5Dtp /Am/k andnp* 5np /nc . The long and short dashed lines in
dicate the values ofl andk, respectively.
-
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~7! yields an analytical expression for the energy in mod
j 52,3, . . . ,n after thepth collision:

Ej
~p!5S 4mn2

n D S 12
mv j

2

4k D sin2~v j pDt/2!

sin2~v jDt/2!
. ~14!

Similarly, v j has an analytical expression; but, since we e
pectEj

(p) to be largest for low frequencies, it is more instru
tive to substitute the Taylor expansion

v j5Ak/mS ~ j 21!p

n D H 12
~ j 21!2p2

24n2 1OF S ~ j 21!

n D 4G J .

~15!

If only the leading order is retained, and we setp5 f and
f Dt52nAm/k, then Ej

( f )50, for j 52,3, . . . ,n, with Ej
(p)

having performedexactly( j 21) oscillations fromE50 and
back. At this level of approximation, we haveh51, for any
n>2. We next retain the second order in Eq.~15! to obtain

FIG. 4. ~a! The energy in the c.m. mode~d! and in the lowest
frequency mode~j! as a function of collision numberp for the n
59, k58, homogeneous chain. The dashed line indicates the
energy of the system.~b! The energy in thej 53 mode~d! and the
j 54 modes~j! as a function of collision number,p, for the n
59, k58, homogeneous chain. The energy in the remaining mo
j 55,...,9 is summed~m!. ~Reduced units wherem5a5nc51.!
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the leading term in the asymptotic approach ofh to 1. From
the definition ofh, we can write 12h5El /E0 , whereEl is
the ‘‘lost’’ energy which is given byEl5( j 52

n Ej
( f ) . In the

limit n→`, this gives

12h;n22/3S 16k2

pl2 D E
0

`

@sin2~u3/3!/u2#du5An2b,

~16!

with A'0.6522 andb52/3, in good agreement with ou
numerics.~The value of the ratio,l/k52, can be derived
from considerations of impulse.!

This analysis leads to the following picture: While th
chain interacts with the wall, energy is exchanged betw
the c.m. mode and the internal modes in such a way that
energy in any particular modej oscillates in time with the
same natural frequency as the mode itself. Since most o
energy exchange occurs with the low frequency modes,
since these are almost commensurate in frequency, the
time the chain interacts with the wall is set by them. Wh
the j 52 mode redeposits the last of its energy into the c
mode, the j 53,4,5, . . . , modes also redeposit theirs, th
chain pushes away from the wall and the interaction en
Thus,E2

(p) ~almost! makes one complete oscillation,E3
(p) ~al-

most! makes two, etc., giving the total interaction timeT
'2p/v2'4p/v3'¯'2nAm/k.

As a first order approximation, the above argument s
fices to explain the overall dynamics; but, it does not expl
the deviation ofh from one for finiten, because, if all the
internal modes were perfectly commensurate with one
other, then one would haveh51, for any n>2. Slight in-
commensurability in the frequencies, arising from higher
der terms inv j , prevents all the energy distributed amo
the modes from being simultaneously redeposited—some
ergy must remain trapped in internal modes. While t
‘‘lost’’ energy increases with chain size asn1/3, as a ratio to
the total energy of the system, it decreases asn22/3, leading
to the result that a homogeneous chain hash51 in the ther-
modynamic limit.

FIG. 5. The energy trapped in the internal modes,Ej
( f ) , as a

function of the mode frequencyv j for the n51001,k51000, ho-
mogeneous chain.~Reduced units wherem5a5nc51.!
n
he
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IV. RESULTS FOR THE CUSHIONED CHAIN:
HARD WALL COLLISIONS

It is clear from the analysis of the preceding section th
for h to remain significantly less than one in the thermod
namic limit, the dynamics of the homogenous chain,
which most of the energy in the internal modes is simul
neously redeposited into the c.m. mode as the interac
ends, must be frustrated. In this section, we treat a partic
chain which does so: the ‘‘cushioned’’ chain in which th
colliding front half is made up of springs with constantkw ,
the other half is make up of springs with constantks , and
kw,ks . To keep the overall spring constantK51, we insist
that 1/kw11/ks52/(n21), while varyingkw /ks or n. In Fig.
6, we presenth for the n533 chain as a function ofkw /ks .
Despite some fluctuation,h generally decreases as the cus
ion is made softer and eventually deviates significantly fr
one. Furthermore, this deviation is not an artifact of the sm
chain size, but persists to larger sizes, as shown in Fig
which presentsh as a function ofn with kw /ks50.2 for n
510 to 1000.

FIG. 6. The coefficient of elasticityh as a function ofkw /ks for
the n533 cushioned chain.~Reduced units wherem5a5nc51.!

FIG. 7. The coefficient of elasticityh as a function of chain size
n, for the kw /ks50.2 cushioned chain.~Reduced units where
m5a5nc51.!
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To gain insight into this result, we consider then533,
kw /ks50.2, cushioned chain. In Fig. 8, we plot the trajec
ries of the particles as the chain interacts with the wall, a
in Fig. 9 we plotDtp andnp as a function of collision num-
ber,p. We note two distinct phases to the dynamics.

~1! A homogeneouslike phase appears in Fig. 9, fop
51 to 13. In this phase,Dtp andnp exhibit the characteristic
plateau behavior of a homogeneous chain withk5kw . The
corresponding feature in Fig. 8 is a front that propagates
and down the weaker half of the chain, traveling at the sp
of sound in that region,nsw5aAkw /m, and ‘‘reflecting’’ off
the interface between the two halves. For any cushio
chain with sufficiently smallkw /ks , this phase lasts a tim
Tw5nAm/kw, asn→`.

~2! An over-compressed phase is evident in Fig. 9 whe
for p514 to 24,Dtp decreases andnp increases beyond the
homogeneous values. It originates when the stiffer half of

FIG. 8. The trajectories of the particles for then533, kw /ks

50.2, cushioned chain. The dashed lines indicate the approxim
division between the variously compressed regions.~Reduced units
wherem5a5nc51.!

FIG. 9. The intercollision time intervalsDtp and the collision
velocity np as a function of collision numberp for the n533,
kw /ks50.2, cushioned chain.~Reduced units wherem5a5nc51.!
-
d

p
d

d

,

e

chain collides into the weaker half. The reflected wave fro
propagates back through the weaker half causing fur
compression, beyond that of the homogeneouslike ph
This is seen in Fig. 8, where the various regions of differ
compression are indicated with guidelines. This phase e
when the interaction ends, and, for sufficiently smallkw /ks ,
lasts a timeTs5Tw/2, asn→`. Thus, the total interaction
time is T5(3n/2)Am/kw for a sufficiently soft cushion and
large chain.

Next, we plotEj
(p) , for j 51, 2, 3, and 4, as a function o

p in Fig. 10. We note the following~1! Most of the energy
exchange during the interaction occurs between the c
mode and the lowest frequency mode.~2! Except for j 52,
Ej

(p) almostmakes (j 21) complete oscillations, although th
amplitude is not constant throughout the interaction, and
creases during the overcompressed phase.~3! E2

(p) does not
complete one oscillation, not even approximately. It is t
mode which is responsible for most of the ‘‘lost’’ energy fo
all sizes of cushioned chains withkw /ks sufficiently small. In
Fig. 11, Ej

( f ) is plotted versusv j for the n533, kw /ks

te

FIG. 10. ~a! The energy in the c.m. mode~d! and in the lowest
frequency mode~j! as a function of collision numberp for the
n533, kw /ks50.2, cushioned chain. The dashed line indicates
total energy of the system.~b! The energy in thej 53 mode~d!
and thej 54 modes~j! as a function of collision number,p, for the
n533, kw /ks50.2, cushioned chain.~Reduced units wherem5a
5nc51.!
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50.2, cushioned chain. We see thatE2
( f ) is orders of magni-

tude larger than the energy trapped in the other modes.
These results can be understood as a frustration of

mechanism by which a homogeneous chain obtainsh51 in
the thermodynamic limit. The deviation ofDtp andnp from
their plateau values during the overcompressed phase m
that the advances in the phase ofCj

(p) and the boost given to
its amplitude with each successive collision@respectively,
the first and second term in Eq.~11!#, are no longer uniform
and the closed form expression forEj

(p) in Eq. ~14! is no
longer valid. Rather, the loss in coherence of the phase
vances and boosts results in more energy being trappe
various modes as the collision comes to an end. Since
lowest frequency modes acquire the bulk of the energy fr
the c.m. mode as the collision progresses, they are most
ceptible to energy trapping. Although we illustrated this ph
nomenon here with the cushioned chain, we expect the s
dynamics to occur in any chain in which there are interfa
between weaker and stiffer springs. Whenever the comp
sion front reflects from such interfaces and returns to part
i 51, we expect further variations inDtp andnp , and further
deviation from the coherence of the homogeneous chain
occur.

V. SOFT WALL COLLISIONS

We next examine the opposite limit, namely collisio
with a soft wall. We model such collisions by settingHI

5zx1
2/2 in Eq. ~2!, i.e., by putting particlei 51 of the chain

in an external harmonic well. Ifz!ki for all i, then a colli-
sion of particlei 51 with the left or right wall of the well is
very slow compared to internal vibrations. In particular, t
internal vibrations of the chain are given plenty of time
respond to a collision with the left wall before a collisio
with the right wall occurs. In this way, we can consider
isolated collision of the chain with the left wall.

Note that only particlei 51 in the chain feels the force o
the wall, even though the wall has an effective thickne
larger than the chain length in thez→01 limit. This is in

FIG. 11. The energy trapped in the internal modesEj
( f ) as a

function of the mode frequencyv j for then533,kw /ks50.2, cush-
ioned chain. Only modes with energy greater than 0.001 are sho
~Reduced units wherem5a5nc51.!
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keeping with our view of collisions wherein interaction wit
the wall is restricted to the interface, and the collision
communicated to the bulk of the chain via successive in
nal interactions. The model, as modified in this section,
tains this feature while allowing the interaction with the wa
to appear very gradually:z→01 is an adiabatic limit, in
contrast to the sudden limit of hard wall collisions.

With HI set as above,K has the same form as in Eq.~4!,
except thatk05z. We will signify such modifications by a
prime superscript, e.g.,K becomesK 8. To see how the soft
wall collisions work, we diagonalizeK 8 for small z using
perturbation theory. Here, the perturbation isz/m in the
~1,1! component of the matrix. In first order perturbatio
theory, the perturbed eigenvalues (v j8)

2 are given by

~v j8!25v j
21

z

m
~ ĝ•êj !

2, ~17!

and the eigenvectors do not change at all. In the case
homogeneous chain, the forms ofv j and (ĝ•êj )

2 have ana-
lytical expressions; however,v18 can be evaluated withou
restriction to the homogeneous casev185Az/nm, for all
chains.

The advantage of this variation on the model is that
dynamics is entirely harmonic, and the collision appears
tirely within the framework of harmonic dynamics. To se
how this works, consider the c.m. degree of freedom wh
in this version of the model is no longer associated with z
frequency; however, sincez is small, the c.m. frequency is
small and the associated period is large. A complete collis
then corresponds to a half period of the c.m. oscillation, a
inelasticity of the collision corresponds to energy trans
from the c.m. motion to the other degrees of freedom dur
the course of this half period. However, to first order inz, the
c.m. degree of freedom corresponds exactly to a nor
mode of the harmonic oscillator; thus, the c.m. energy i
constant of the motion at this level of approximation, and
collision is perfectly elastic. This is true for any set ofki ,
and does not depend on the thermodynamic limit. In cont
to a hard wall collision, a very soft wall collision is rathe
insensitive to the characteristics of the harmonic chain.

To get an inelastic soft wall collision, we must go
second order perturbation theory. At this level, the eigenv
tor ê18 is perturbed away from the c.m. degree of freedo
while the other eigenvectors pick up small components
c.m. motion. In second order perturbation theory~i.e., eigen-
values given to second order!, the corrections of the eigen
vectors are first order inz. Specifically,

êj85êj1
z

m (
kÞ j

~ ĝ•êj !~ ĝ•êk!

v j
22vk

2 . ~18!

Although this eigenvector is not normalized, it can be us
as it stands because the leading correction to achieve nor
ization is second order inz.

The time evolved chain configuration still is given by Eq
~5! and ~6!, except that primed quantities replace unprim
ones. Because the dynamics is purely harmonic,Cj8 does not
change with time. The outcome of the collision is thus d
termined transparently in terms of the initial conditio
which we use to evaluateCj8 . With perturbed eigenvectors

n.
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the initial conditions are not as in the original mode
whereinCj52 incAn, for j 51, and zero otherwise. Rathe
using the same initial state of the chain as above~i.e., pure
c.m. motion heading towards the left wall!, we have that
Cj852 incê1•êj8 .

Thus, an initial excitation of the c.m. degree of freedo
now corresponds to excitation of all the normal modes,
though all Cj8 but C18 are small. Using Eq.~18!, we can
evaluateCj8 :

Cj852 incFd j ,11~12d j ,1!
z

mAn

ĝ•êj

v j
2 G . ~19!

The same expression forCj8 applies before, during and afte
the collision with the soft wall. To see how inelastici
emerges, reconsider the initial state of the chain. It is a lin
combination of all normal modes, the same linear combi
tion at all times. However, initially the normal modes a
phased such that this linear combination produces mo
only in the c.m. degree of freedom. At later times, the ph
alignment is destroyed and internal vibrations are excited
complete collision requires half a period of thej 51 mode,
which corresponds to many periods of the other mod
Thus, we can expect the phases of thej 52,3, . . . ,n modes
to be, in a sense, randomized at the end of the collision.

At this stage it is convenient to consider the thermod
namic limit n→`. In this limit, all but the j 51 mode are
spread out over very many degrees of freedom, and the
motion represents a negligible component of any one
these modes. The total energy in all modes, butj 51, can
thus be interpreted as the total energy in the internal deg
of freedom at the end of the collision. Only here, the to
energy in thej 52,3, . . . ,n modes is independent of time
and it just happens that the energy is manifest as c.m. mo
initially. At the end of the collision, the modes are random
phased and the energy is lost from c.m. motion.

We can now evaluate the coefficient of restitution us
12h5E1 /E0 :

12h5S (
j 52

n
m

2
uCj8u

2D Y S m

2
uC18u

2D5
z2

m2n (
j 52

n
~ ĝ•êj !

2

v j
4 .

~20!

In the case of a homogeneous chain, this yields an analy
expression with a simple form in the limitn→`:

12h;
z2

4pk2n Ep/2n

1

~A12z2/z4!dz5
2z2n2

3p4k2 . ~21!

Equation ~21! gives the leading term in the thermod
namic limit. The last expression is understood by first not
that the adiabatic limit, which we use to define a soft co
sion, must be taken before the thermodynamic limit. Mo
specific to Eq.~21!, this means thatz must be small com-
pared tok/n. This ensures that the collision interaction
slower than the lowest frequency vibrations; otherwise,
use of perturbation theory is inappropriate.

Equation~21! shows how elasticity is approached in th
adiabatic limit~i.e., asz2! while revealing the curious resu
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that inelasticity actually increases with increasingn in soft
wall collisions, quite at odds with the elasticity of hard wa
collisions of homogeneous chains in the thermodynam
limit. The increasing inelasticity results because of the
nominator in Eq.~18!. In the thermodynamic limit there ar
modes with arbitrarily low frequency. These modes inter
most strongly with the zeroth orderj 51 mode, which rep-
resents pure c.m. motion, and they yield large contributio
to the inelasticity. Since the profusion of low frequen
modes occurs for all chains in the thermodynamic limit, n
just homogeneous chains, we expect growth in inelasti
for all chains asn→`.

VI. CONCLUDING REMARKS

While simple in nature, our model does give considera
insight into how energy is lost to the internal degrees
freedom of a solid during inelastic collisions where the m
croscopic forces involved are purely conservative. For a
mogeneous chain colliding with a hard wall, energy orig
nally in the c.m. mode is distributed among the intern
modes as the collision progresses, but this energy is ef
tively redeposited into the c.m. mode simultaneously as
interaction ends, giving a coefficient of restitution near uni
This process is seen as the propagation of a compres
front through the chain, with near perfect transmission of
energy back into c.m. motion when the front reaches the
of the chain.

For an inhomogeneous chain colliding with a hard wa
energy is again distributed among the modes. Howe
boundaries between regions with different force consta
reflect the compression front and this gives rise to a loss
phasing of the modes in comparison with the homogene
chain. As a result, at the end of the interaction, more ene
is trapped in some modes and the chain is considerably
elastic.

In contrast to collisions with a hard wall, soft wall colli
sions are always perfectly elastic in the adiabatic limit, d
spite the details of the spring constants connecting
masses. Also, unlike hard wall collisions, the asymptotica
small inelasticity associated with soft wall collisions in
creases with chain size—asymptotically small with respec
collision adiabaticity.

Not surprisingly the most important modes involved
the restitution are the low frequency modes, i.e.,
‘‘bulky’’ modes of long wavelength. The higher frequenc
modes play a minimal role in both homogeneous and in
mogeneous chains. Our model, then, does not really dem
strate how energy is dissipated into heat, in which the ene
is more or less equally distributed among all the modes
cording to the equipartition theorem. This ultimate arrang
ment of internal energy results only with inclusion of anha
monic terms in the interparticle potential which wou
couple the normal modes and allow energy to leak to hig
frequency modes over time. However, at least at low co
sion velocity for which anharmonicity is a small perturb
tion, the thermalization of internal energy can be viewed
subsequent to the collision-induced energy rearrangemen
investigate.
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