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Coefficient of restitution for one-dimensional harmonic solids
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Using a numerical algorithm based on the time evolution of normal modes, we calculate the coefficient of
restitution » for various one-dimensional harmonic solids colliding with a hard wall. We find that, for a
homogeneous chaim=1 in the thermodynamic limit. However, for a chain in which weaker springs are
introduced in the colliding front halfy remains significantly less than one even in the thermodynamic limit,
and the “lost” energy goes mostly into low frequency normal modes. An understanding of these results is
given in terms of how the energy is redistributed among the normal modes as the chain collides with the wall.
We then contrast these results with those for collisions of one-dimensional harmonic solids with a soft wall.
Using perturbation theory, we find thgt=1 for all harmonic chains in the extremely soft wall limit, but that
inelasticity grows with increasing chain size in contrast to hard wall collisions.

PACS numbd(s): 45.10—b, 45.50.Tn

[. INTRODUCTION these studies, our approach here is to focus solely on conser-
vative translational to vibrational energy transfer, as a model
Collisions have long been studied in physics and the defor low energy microscopic cluster collisions.
velopment of their dynamics has led to the formulation of The coefficient of restitution is introduced to measure the
numerous conservation laws. Historically, the conservatioriranslational kinetic energy “lost” during a collision:
of energy remained elusive because it holds only for systems
in which conservative forces act; yet, most macroscopic sys- _ & 1)
tems have some dissipative forces at work and so tend to 7 Kp’
“loose” energy with time. Nonetheless, at the microscopic
level, the forces holding ordinary matter together are electrowhereK, andK, are the translational kinetic energies before
magnetic in nature and therefore conservative. Dissipation ignd after the collision, respectively. Succinctly put then, our
then understood as energy which was originally in a fewquestion is this: If one maintains that at a sufficiently micro-
macroscopic degrees of freedom, but whaimehowgets  scopic level the forces holding the solid together are conser-
diffused among many microscopic degrees of freedom as theative, then no energy is lost during the collision and the
interaction progresses. However, while it is easy to underdifference, K,—K,, must go into the internal degrees of
stand how conservative forces conserve energy, it is not stieedom of the elastic solid. What internal degrees of free-
easy to see how they can dissipate it. dom are excited and how are they excited? Below, we ad-
Recent studies of the scattering of thermal clusters fronglress this question by considering the dynamics of one di-
solid surfaces raise such questiphs4]. These studies focus mensional solids of identical point masses connected by
on collisions with significant deposition of translational ki- harmonic springs which are made to collide with a hard or
netic energy into internal modes, and concern themselvesoft wall. While this model represents a strong idealization
with collision-activated energy-threshold processes, such & real physical systems—in particular, it is one dimensional
chemical reactions of species imbedded in inert clusters, cand only takes into account harmonic interactions—it does
cluster evaporation and shattering. In connection to thesgield exact analytical solutions and so makes explicit at least
studies, in this paper we investigate the more elementargne mechanism for the dissipation of energy by conservative
question of the dynamical mechanism for internal energyforces.
deposition, without the complications associated webhini- Since our aim is to gain insight into howvaries with the
tial internal energy(b) activation of threshold processes, andinternal structure of the solid, we first investigate an ideal
(c) interactions between rotational and vibrational degrees ofase in whichp=1 and then see how deviation from it can
freedom. To this end, we consider the coefficient of restitudead to »<<1. We show that the homogeneous chain, in
tion of one dimensional harmonic solids initially at 0 K. which all the spring constants are eq{ial, hasz=1 in the
The literature’s treatment of the coefficient of restitution thermodynamic limit when it collides with a hard wall, while
is largely concerned with collisions of macroscopic bodiesthe introduction of a “cushion” in the form of weaker
In particular, there is a focus on the role of rotational dynam-springs placed in the colliding front half of the chain gener-
ics, to the extent that some studies consider only rigid bodglly leads ton<1. Augmenting our numerical study with a
collisions [5]. In general, there is a reliance on simulation heuristic analysis, we argue why this should be the case and
based on a phenomenological description of the interactioarrive at some intuitive understanding of a mechanism by
between small elements within the colliding bodies whichwhich energy can be dissipated by conservative forces. We
include intrinsically dissipative force§6]. In contrast to then contrast hard wall collisions with soft wall collisions

1063-651X/2000/6@)/20159)/$15.00 PRE 61 2015 ©2000 The American Physical Society



2016 ANTHONY G. BASILE AND RANDALL S. DUMONT PRE 61

and conclude from our analysis th@) all harmonic chains diagonalized. Numerically, sindé is a symmetric tridiago-
have n=1 in the adiabatiqdextremely soft wa)l limit and  nal matrix, its diagonalizatiorieigenvalues plus eigenvec-
that (2) inelasticity grows with increasing chain size, which tors) entails an orden? operation which, in the homoge-
is the opposite of hard wall collisions. neous limit, reduces to simple analytical expressions. Taking
The remainder of this paper is organized as follows. Inthe eigenvalues and eigenvectors todifeand &;, respec-
Sec. I, we present the details of our model for hard walltively, with j=1,2, . . . n labeling the normal modes, we can
collisions and derive a method for solving its dynamics bywrite
time evolving the normal modes. In Sec. Ill, we present our

results for the homogeneous chain and give a heuristic analy- "

sis of why =1 in the thermodynamic limit. In Sec. IV, we )7('()=121 a()g, ®)
treat the cushioned chain and, in light of what was found in
Sec. lll, argue for hown<1 is obtained. In Sec. V, we where a;(t) obeys&j(t)+wj2aj(t)=0, and has solution,

present our model for soft wall collisions and argue wijy

=1 in the adiabatic limit, with inelasticity growing with in- C )
creasing chain size. Finally, we close with some general re- aj(t)ZRE{; exp—iwjt)|. (6)
marks. !
Here C;=w;A;+iB;, whereA; and B; are real constants
II. NORMAL MODE DYNAMICS OF ONE-DIMENSIONAL independent of time. Written in this form, E@) holds even
HARMONIC SOLIDS: HARD WALL COLLISIONS for the center of mas&.m) mode,j =1, provided one treats

0" as a limit. Eq.(3) can now be written as
The Hamiltonian for a one dimensional harmonic solid of ~ %.n g (3) 0

n ; .
n identical point masses, interacting with a hard wall, can be_EjzlEj , where the energy in modeis given by
written as 1
2 J
H=Hy+H,, (2
nd is independent of time. Recalling that the above was
erived in the absence of any interaction with the hard wall,
a nice interpretation now arises. The energy in any particular
normal mode remains constant during the time between col-
h n—1 lisions of particlei =1 with the wall. However, once such a
HOZTE Xi2+ 1 Z Ki(X; . 1— X —a)2, 3) collision does_ occ_ur,_the_ total energy of the system does not
23 i=1 change, but its distribution among the normal modes does.
The question of how energy in a macroscopic degree of free-
wherem, x;, andx; are the mass, position, and velocity of dom is “lost” to the many microscopic internal degrees of
particle i, respectively. Particles andi+1 interact via a freedom reduces, for our model, to an investigation into how
harmonic potential with spring constark,, and have an the energy gets redistributed among the normal modes as the
equilibrium spacinga. The interaction with the hard wall at collision progresses.
x=0 can be accounted for by lettimg — —X; whenever The interaction of particle=1 with the hard wall can
x;=0. The effect ofH, on the equations of motion is given now be added by modeling the impulse given by the wall to
below, but we note here th&t, does not change the total the particle with a delta function force. Suppose particle
energy of the system, and so incorporates no dissipative-1 collides with the wall at times=t;,t,,t5, ... . If im-
terms into Eq.(2). mediately before theth collision this particle has velocity
Next, we define the homogeneous limit of Eg) as the X4(t,), then immediately after, it has velocitzypzi(l(t;)
case wherek; =k, for all i. The_ thermodynamic limit can =—Xy(t,), and the force exerted by the wall is given by
then be understood as—, with M=nm, K=k/n, and g =2my s(t—t,). This changes the equation of motion for

A=na fixed. These relations guarantee that the milss particlei=1 in Eq. (4), the other components being unaf-
spring constanK, and lengthA of the entire chain will re-  fected, and gives

main finite as the limit is taken. The homogeneous chain can
now be modified by letting some of tHe differ from one

. . . . a
whereH represents the interaction of the point masses Wltlh
one another andH, represents the interaction of the chain
with the hard wall. The first term is given by

another. In this case, it is still possible to keep the overall y= _K7+2@% vpd(t—tp), ®)
spring constant of the chain fixed in the thermodynamic limit
by insisting thatk =1/2!""(1/k;) remain fixed. where the sum is over all the collisions that partictel

In the absence oH,, the equations of motion can be makes with the hard wall, arfj=(1,0,Q . . .,0). Restricting
obtained from Eq(3) via the Hamiltonian formalism which, ourselves to a sufficiently small neighborhood oft,,
in matrix language, gives a;(t) now obeys&j(t)+wj2aj(t)=2(g-éj)vpé(t—tp), and

) has the solution
y): - Ky)! (4)

(p—1)

_ i i _
wherey;=x;—(i—1)a, fori=1,2,...n, andK is a tridi- “i(t)_Re{ o] exf —loj(t=t,-1)]}, ©
agonal matrix which depends on tkgs andm. Eq. (4) can
be solved by a normal mode decomposition in whichis  for t,_,<t<t,, and
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Xexp[—le(t—tp)]}, (10 I
fed
|
for t,<t<tp,,. If we take Eq.(9) as the standard form for =
expressingy;(t) in terms ofC; , then a mapping is suggested g
which connects the value dE; before thepth collision, o
C{P~Y, to its value afterC{P: %
|

CiP=CiP™Vexp(—iwjAty, 1) +2iv,(3-8), (1) B . |
0.01 .
3 10 50

where At, ;=t,—t, , is the time the system takes to _
evolve from the p—1)th to thepth collision. The terms in Number of Particles, n

Eqg. (11) are easily understood. The first term arises because FIG. 1. The deviation of; from unity as a function of chain size
we update the reference time in E§) fromt,_; tot, with (o homogeneous chain.

each successive collision—it represents the advance in the

phase on](p Y. But thg second term is the boost given to IIl. RESULTS FOR THE HOMOGENEOUS CHAIN:

the velocity by the collision. Unfortunately, to apply E@1) HARD WALL COLLISIONS

numerically requires not only the value 6f°~ Y, but also _

At,_; and »,, which we do not have pr|0r| At least v, ~ For our numerical work, we take t_he mass, length, and
can be expressed in terms @Tp 1) using time scale to ben, a anda/v., respectively(This amounts

to settingm=a=wv.=1 in our equations; however, to avoid
n ambiguity, we leave these parameters exp)ids expected
2 (9-8) P D exp(—iwjAty_)|. from a dimensional analysis; is independent of all param-
= eters for the homogeneous chain, exceptin Fig. 1, we
12 present a log-log plot of (% %) versusn. For clarity, we
only plot the rangen= 3 to 50, but the same trend is evident
to n=10". Despite some oscillation, (1) fits very well a

vp=—%y(ty)=—1m

But, At,_; has no simple expressid®], and must be ob-

tained as the solution to power law curveAn™#, with A~0.75 andB~0.68; and,
" g.a)cPD extrapola_ltir_lg, _one_finds 'ghaﬁ—>1 asn—o. _
yi(to)= Re{ E (9-8)C; exp—iw Aty 1)|=0 To gain insight into this result, we consider the details of
! =1 o ' the dynamics of a finite chain. Figure 2 shows the interaction

(13)  of then=9, k=8, homogeneous chain with the hard wall.
First, we note that\t, and », remains remarkably constant
A simple bracketing technique is sufficient to find the zerothroughout the interaction, as can be seen in Fig. 3, where
since the approximate value aft,_, is known, as will be  At, andv, are plotted as a function of the collision number,
discussed in the next section.

Now, only the initial conditions in Eq(11) need to be
specified, and then the entire dynamics of the chain can be
found by repeatedly applying the above mapping. The initial
value ofC(o) can be expressed in terms of the initial posi-
tions and velocities of the particlea!®=y(0)-&;, B{”

—y(O) g;. If we initialize the chain at,=0 with all its
energy in the c.m. mode, that is, with(0)=0, andy;(0)
=, thenC{?= —ivc\/ﬁ for j=1, and zero otherwise.

We checked the above algorithm against molecular dy-
namics. The Euler-Cromer algorithm is both fast and accu-
rate for this system[9]. Using a time step, At
=(0.001)ym/k, we find that the energy of the system is
constant within an error margin of at most 0.05% for various
n=100 chains—both homogeneous and not. Although both
molecular and normal mode dynamics involve an onder
operation to findzy, and both lead to comparable results, the
latter is faster by a factor of about 20 and more accurate.
Error propagation occurs in molecular dynamics because of F|G. 2. The trajectories of the particles for the=9, k=8, ho-
the unavoidable finite time step; whereas, every calculatiomogeneous chain. The dashed lines indicate the approximate divi-
in normal mode dynamics can essentially be reduced to masion between the compressed and uncompressed regReduce
chine accuracy. units wherem=a=v.=1.)

'y

Position, x
, O = N W ~ OO N 0 © O

Time, 7
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FIG. 3. The intercollision time intervalat, and the collision 1.2 b
velocity v, as a function of collision numbegy for then=9, k=8, j=3
homogeneous chain. The stars indicate reduced uAit§ 1r
=At,/ym/k and v; =v,/v;. The long and short dashed lines in-
dicate the values aof and «, respectively. - 08}
p. As for longer chains, these only deviate significantly from Li
their plateau values for the first and last collisions. The pla- g 0.6 )
teau values are themselves rather insensitive. terom its 5 j=4
value forn=2, where it can be shown thait,= 7ym/2k 04
~(2.2214)ym/k, At, gradually rises toxym/k, with A .
~2.2995; and similarlyy, rises fromwy, to xv., with « 02}
~N\/2~1.1498, an—=. Further, we find that, the number
of times particlei=1 collides with the wall isf~n/« 0 . w : . L '
~(0.8697), and the time elapsed from the first to last col- 0 1 2 3 4 5 6 7 8
lision is T=t,—t;~2nym/k, asn—co. Collision, p

Next, we note in Fig. 2 that a well definéant separating . .

the compressed from the uncompressed region of the chain FIG. 4. (&) The energy in the c.m. mod®) and in the lowest

propagates up and down it at the speed of sound in the mdrequency mode¢M) as a function of collision numbeg for the n

dium v :a\/m (This is indicated with guidelines in Fig =9, k=8, homogeneous chain. The dashed line indicates the total

2) This long wavelength{low frequency excitation is evi- Sne'gy of the systentb) The energy in thg=3 mode(®) and the

dent in Fig. 4a) where we 1otE® for p=0 (before an j=4 modes(M) as a function of collision numbep, for then

collision) tg.p t—8 (after thz Ias)ic Therep ;ve see that m())/st =9, k=8, homogeneous chain. The energy in the remaining modes,
== 1efe, We j=5,...,9 is summedA). (Reduced units wherm=a= v .=1.

of the energy lost by the c.m. mode is acquired by the Iowesjt =1

frequency (=2) mode during &p=4, and redeposited (7) yields an analytical expression for the energy in modes
into the c.m. mode during<4p<8. However, some of the j—23  p after thepth collision:

energy does go into higher frequency modes, as is evident in
Fig. 4(b). Still, as is the case for the=2 mode, most of this
energy is redeposited into the c.m. mode by the time the
interaction ends, WitlE(zp) havingalmostmade one complete
oscillation fromE=0 and back,Eg"’ having almostmade  Similarly, o; has an analytical expression; but, since we ex-
two, E{P) having almostmade three, etc. This trend, how- pectEj(p) to be largest for low frequencies, it is more instruc-
ever, breaks down for larggras is already becoming appar- tive to substitute the Taylor expansion
ent for j =4. Figure 5 shows the energy trapped in the inter-

nal modes after the last collision as a function of frequency (J-1= (j—1)%=? (G-1\*

for then=1001,k=1000, homogeneous chain. We note that “i~ Jim| —— i1~ sz O ( .
most of the “lost” energy resides in the lower frequency (15)
modes, in the approximate rangec@<n*3\k/m.

More insight into the above results can be obtained if twolf only the leading order is retained, and we getf and
simplifying assumptions are made in our analytical expresfAt=2nm/k, thenE{'’=0, for j=2,3,...n, with EP
sions. If we assume, in accordance with our numerical rehaving performeaxactly(j —1) oscillations fromE=0 and
sults, thatAt,= At andv,= v are constant for alp, then the  back. At this level of approximation, we have=1, for any
mapping in Eq.(11) can be written in closed form, and Eq. n=2. We next retain the second order in Ef5) to obtain

4mp?
n

- mo? | sirf(w;pAt/2)
BT = T Ak

si(w;At/2) -

(14
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FIG. 5. The energy trapped in the internal mode§,), as a FIG. 6. The coefficient of elasticity as a function ok, /k for

function of the mode frequency; for the n=1001,k=1000, ho-  the n=33 cushioned chair{Reduced units wherm=a=v.=1)
mogeneous chairfReduced units wherm=a=v.=1.)

IV. RESULTS FOR THE CUSHIONED CHAIN:
the leading term in the asymptotic approachyaio 1. From HARD WALL COLLISIONS
the definition of», we can write - »=E,/Ey, whereE, is
the “lost” energy which is given byE,= }‘ZZE}”. In the
limit n—oo, this gives

It is clear from the analysis of the preceding section that,
for » to remain significantly less than one in the thermody-
namic limit, the dynamics of the homogenous chain, in
which most of the energy in the internal modes is simulta-
neously redeposited into the c.m. mode as the interaction
ends, must be frustrated. In this section, we treat a particular
(16)  chain which does so: the “cushioned” chain in which the
colliding front half is made up of springs with constdq,
the other half is make up of springs with constégt and
kw<Kks. To keep the overall spring constaft= 1, we insist
that 1k,,+ 1/ks=2/(n—1), while varyingk,,/ks or n. In Fig.

6, we presenty for then=33 chain as a function &€, /ks.

167\ (=
1—n~n‘2’3(#> Jo [sirf(u®/3)/u?]du=An""#,

with A=~0.6522 andB=2/3, in good agreement with our
numerics.(The value of the ration/k=2, can be derived
from considerations of impulse.

This analysis leads to the following picture: While the

chain interacts with the wall, energy is exchanged betweet'?es.p'te some fluctuatior; generally d?CfeaS‘?S as the cush-
the c.m. mode and the internal modes in such a way that thign is made softer and eventually deviates significantly from
energy in any particular modeoscillates in time with the one. Furthermore, this deviation is not an artifact of the small

same natural frequency as the mode itself. Since most of th%h"?“n size, but persists to .Iarger SIzes, as shown in Fig. 7
energy exchange occurs with the low frequency modes, anyyhich presents; as a function ofn with ky /ks=0.2 for n
since these are almost commensurate in frequency, the total 10 to 1000.

time the chain interacts with the wall is set by them. When

the j=2 mode redeposits the last of its energy into the c.m. 0.78
mode, thej=3,4,5..., modes also redeposit theirs, the 076 |

chain pushes away from the wall and the interaction ends

Thus,E{P (almos) makes one complete oscillatio{’ (al- 0741
mos) makes two, etc., giving the total interaction tirfie <~ 0.72
~27lwy~A4ml wz~---~2n{ym/k. £ 07

As a first order approximation, the above argument suf-.
fices to explain the overall dynamics; but, it does not explaing 0-68
the deviation ofy from one for finiten, because, if all the 0.66
internal modes were perfectly commensurate with one an-
other, then one would have=1, for anyn=2. Slight in- 0.64 ¢
commensurability in the frequencies, arising from higher or- g2l
der terms inw;, prevents all the energy distributed among 0.6 ‘
the modes from being simultaneously redeposited—some en 0 100 1000
ergy must remain trapped in internal modes. While this
“lost” energy increases with chain size as”, as a ratio to
the total energy of the system, it decreases 24 leading FIG. 7. The coefficient of elasticity as a function of chain size,
to the result that a homogeneous chain hasl in the ther- n, for the k,/ks=0.2 cushioned chain(Reduced units where
modynamic limit. m=a=v,=1)

cien

Coeffi

Number of Particles, n
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FIG. 8. The trajectories of the particles for the= 33, k,, /ks

=0.2, cushioned chain. The dashed lines indicate the approximate

division between the variously compressed regiéRgduced units
wherem=a=v.=1.

To gain insight into this result, we consider the= 33,
k. /ks=0.2, cushioned chain. In Fig. 8, we plot the trajecto-

ries of the particles as the chain interacts with the wall, and

in Fig. 9 we plotAt, and v, as a function of collision num-
ber, p. We note two distinct phases to the dynamics.

(1) A homogeneouslike phase appears in Fig. 9, gor
=1 to 13. In this phaset, and v, exhibit the characteristic
plateau behavior of a homogeneous chain Withk,,. The

corresponding feature in Fig. 8 is a front that propagates up
and down the weaker half of the chain, traveling at the speed

of sound in that regiony,,= avk,,/m, and “reflecting” off

RANDALL S. DUMONT
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the interface between the two halves. For any cushioned FIG. 10.(a) The energy in the c.m. mod®) and in the lowest

chain with sufficiently smalk,, /ks, this phase lasts a time
Tw=nym/k,, asn—oo,

(2) An over-compressed phase is evident in Fig. 9 where

for p=14to 24,At, decreases and, increases beyond their
homogeneous values. It originates when the stiffer half of th

1.6

o - -
o - N »

o

Velocity, v, & Time, Az,
(o))

o
n

%

16 20

I 1

4 8

o
o

12 24

Collision, p
FIG. 9. The intercollision time intervaldt, and the collision

velocity v, as a function of collision numbep for the n=33,
ky, /ks=0.2, cushioned chaifReduced units whema=a=v.=1.)

e:

frequency modeM) as a function of collision numbep for the
n=33, k,,/ks=0.2, cushioned chain. The dashed line indicates the
total energy of the systentb) The energy in thg =3 mode(®)

and thej =4 modeg M) as a function of collision numbep, for the
n=33, k,,/ks=0.2, cushioned chainReduced units whersm=a
ve=1)

chain collides into the weaker half. The reflected wave front
propagates back through the weaker half causing further
compression, beyond that of the homogeneouslike phase.
This is seen in Fig. 8, where the various regions of different
compression are indicated with guidelines. This phase ends
when the interaction ends, and, for sufficiently snkgllks,
lasts a timeT,=T,/2, ash—. Thus, the total interaction
time is T=(3n/2) ym/k,, for a sufficiently soft cushion and
large chain.

Next, we plotE{P’, for j=1, 2, 3, and 4, as a function of
p in Fig. 10. We note the followindgl) Most of the energy
exchange during the interaction occurs between the c.m.
mode and the lowest frequency mod@) Except forj=2,
Ej(p) almostmakes {—1) complete oscillations, although the
amplitude is not constant throughout the interaction, and in-
creases during the overcompressed phééeE(zp) does not
complete one oscillation, not even approximately. It is this
mode which is responsible for most of the “lost” energy for
all sizes of cushioned chains wikly, / kg sufficiently small. In
Fig. 11, E{") is plotted versusw; for the n=33, K, /ks
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100 keeping with our view of collisions wherein interaction with
the wall is restricted to the interface, and the collision is
communicated to the bulk of the chain via successive inter-
nal interactions. The model, as modified in this section, re-
tains this feature while allowing the interaction with the wall
to appear very gradually—0" is an adiabatic limit, in
contrast to the sudden limit of hard wall collisions.

With H, set as aboveX has the same form as in E@),
except thatky=¢. We will signify such modifications by a
prime superscript, e.gk becomeX’. To see how the soft
wall collisions work, we diagonaliz&’ for small { using
perturbation theory. Here, the perturbation d&m in the
(1,2) component of the matrix. In first order perturbation
theory, the perturbed eigenvalueusj’()2 are given by

10*

0.1

Energy, £,

0.01

0.001
o 1 2 3 4 5 6 7 8 9 10

Frequency, o, (wj,)zzwj2+ %(@-éj)z, 17
FIG. 11. The energy trapped in the internal mod¥%’ as a
function of the mode frequenay; for then=33,k,, /ks=0.2, cush-  and the eigenvectors do not change at all. In the case of a
ioned chain. Only modes with energy greater than 0.001 are showiomogeneous chain, the forms of and @- éj)Z have ana-
(Reduced units whem=a=v.=1) lytical expressions; however,; can be evaluated without
restriction to the homogeneous casg=-/{/nm, for all
=0.2, cushioned chain. We see tii&f is orders of magni- chains.
tude larger than the energy trapped in the other modes. The advantage of this variation on the model is that the
These results can be understood as a frustration of thgynamics is entirely harmonic, and the collision appears en-
mechanism by which a homogeneous chain obtgirsl in  tirely within the framework of harmonic dynamics. To see
the thermodynamic limit. The deviation dft, and v, from  how this works, consider the c.m. degree of freedom which
their plateau values during the overcompressed phase meainsthis version of the model is no longer associated with zero
that the advances in the phase&}f’) and the boost given to frequency; however, sincéis small, the c.m. frequency is
its amplitude with each successive collisiprespectively, small and the associated period is large. A complete collision
the first and second term in E(L1)], are no longer uniform then corresponds to a half period of the c.m. oscillation, and
and the closed form expression fElfp) in Eq. (14) is no inelasticity of the collision corresponds to energy transfer
longer valid. Rather, the loss in coherence of the phase adrom the c.m. motion to the other degrees of freedom during
vances and boosts results in more energy being trapped the course of this half period. However, to first ordegjithe
various modes as the collision comes to an end. Since them. degree of freedom corresponds exactly to a normal
lowest frequency modes acquire the bulk of the energy froninode of the harmonic oscillator; thus, the c.m. energy is a
the c.m. mode as the collision progresses, they are most sugenstant of the motion at this level of approximation, and the
ceptible to energy trapping. Although we illustrated this phe-collision is perfectly elastic. This is true for any setlf,
nomenon here with the cushioned chain, we expect the san@nd does not depend on the thermodynamic limit. In contrast
dynamics to occur in any chain in which there are interface4o a hard wall collision, a very soft wall collision is rather
between weaker and stiffer springs. Whenever the compredasensitive to the characteristics of the harmonic chain.
sion front reflects from such interfaces and returns to particle To get an inelastic soft wall collision, we must go to
i=1, we expect further variations it, and»,, and further second order perturbation theory. At this level, the eigenvec-
deviation from the coherence of the homogeneous chain, ttor &; is perturbed away from the c.m. degree of freedom,
occur. while the other eigenvectors pick up small components of
c.m. motion. In second order perturbation the@rg., eigen-
V. SOET WALL COLLISIONS values given_ to secon(_j ordeth_e_ corrections of the eigen-
vectors are first order ig. Specifically,
We next examine the opposite limit, namely collisions
with a soft wall. We model such collisions by settih o A o (0-8)(0-8)
Y . ) o y e-—e-+—2 . (18
={x1/2 in Eq.(2), i.e., by putting particle=1 of the chain o mi& Wi — g
in an external harmonic well. If<k; for all i, then a colli-
sion of particlei =1 with the left or right wall of the well is  Although this eigenvector is not normalized, it can be used
very slow compared to internal vibrations. In particular, theas it stands because the leading correction to achieve normal-
internal vibrations of the chain are given plenty of time toization is second order ig.
respond to a collision with the left wall before a collision ~ The time evolved chain configuration still is given by Egs.
with the right wall occurs. In this way, we can consider an(5) and (6), except that primed quantities replace unprimed
isolated collision of the chain with the left wall. ones. Because the dynamics is purely harmdD[CdOES not
Note that only particlé=1 in the chain feels the force of change with time. The outcome of the collision is thus de-
the wall, even though the wall has an effective thicknesgermined transparently in terms of the initial conditions
larger than the chain length in the—=0" limit. This is in  which we use to evaluat@j’ . With perturbed eigenvectors,
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the initial conditions are not as in the original model, that inelasticity actually increases with increasimgn soft
whereinC; = —iwen, for j=1, and zero otherwise. Rather, wall collisions, quite at odds with the elasticity of hard wall
using the same initial state of the chain as ab@we, pure collisions of homogeneous chains in the thermodynamic
c.m. motion heading towards the left wallwe have that limit. The increasing inelasticity results because of the de-
Ci=—ive, & . nominator in Eq.(18). In the thermodynamic limit there are
Thus, an initial excitation of the c.m. degree of freedommodes with arbitrarily low frequency. These modes interact
now corresponds to excitation of all the normal modes, almost strongly with the zeroth ord¢re=1 mode, which rep-

though allC{ but C; are small. Using Eq(18), we can resents pure c.m. motion, and they yield large contributions

evaluateCj’: to the inelasticity. Since the profusion of low frequency
modes occurs for all chains in the thermodynamic limit, not
, ) { G-8 just homogeneous chains, we expect growth in inelasticity
Cj=—lwe §ja+ (1650 m_\/ﬁ “’_12 : 19 for all chains as1—.

The same expression fﬁl*j’ applies before, during and after
the collision with the soft wall. To see how inelasticity VI. CONCLUDING REMARKS
emerges, reconsider the initial state of the chain. It is a linear . . . .
combination of all normal modes, the same linear combina: \.Nh”e. simple in nature,_our model do‘?s give considerable
tion at all times. However, initially the normal modes aremSlght Into how.energy IS lost Fo the. |_nternal degrees 9f
phased such that this linear combination produces motioff€€dom of a solid during inelastic collisions where the mi-
only in the c.m. degree of freedom. At later times, the phasé“oSCOp'C forces_mvolyeQ are _purely conservative. For a hp-
alignment is destroyed and internal vibrations are excited. Anegeneous chain colliding with a hard wall, energy origi-
complete collision requires half a period of the 1 mode, nally in the c.m. .m.ode is distributed among the mternal
which corresponds to many periods of the other modesnodes as the collision progresses, but this energy is effec-
Thus, we can expect the phases of Ih;e2’3, ... N modes tlvely redepOSited into the c.m. mode SimultaneOUSIy as the
to be, in a sense, randomized at the end of the collision. interaction ends, giving a coefficient of restitution near unity.
At this stage it is convenient to consider the thermody-This process is seen as the propagation of a compression
namic limit n—ce. In this limit, all but thej=1 mode are front through the chain, with near perfect transmission of the
spread out over very many degrees of freedom, and the c.renergy back into c.m. motion when the front reaches the end
motion represents a negligible component of any one obf the chain.
these modes. The total energy in all modes, patl, can For an inhomogeneous chain colliding with a hard wall,
thus be interpreted as the total energy in the internal degreeshergy is again distributed among the modes. However,
of freedom at the end of the collision. Only here, the totalboundaries between regions with different force constants
energy in thej=2,3, ... n modes is independent of time, reflect the compression front and this gives rise to a loss in
and it just happens that the energy is manifest as c.m. motiophasing of the modes in comparison with the homogeneous
initially. At the end of the collision, the modes are randomly chain. As a result, at the end of the interaction, more energy

phased and the energy is lost from c.m. motion. _is trapped in some modes and the chain is considerably less
We can now evaluate the coefficient of restitution usingg|astic.
1-7=E4/Ey: In contrast to collisions with a hard wall, soft wall colli-
n 5 N A a2 sions are always perfectly elastic in the adiabatic limit, de-
1- 9= ( 2 m|C-’|2) / (T|C1|2> — 5_22 (g'iJ) _ spite the details of the spring constants connecting the
=2 2 mn= o masses. Also, unlike hard wall collisions, the asymptotically

(20) small inelasticity associated with soft wall collisions in-
) o . creases with chain size—asymptotically small with respect to
In the case of a homogeneous chain, this yields an analyticalyjision adiabaticity.
expression with a simple form in the limit— o Not surprisingly the most important modes involved in
the restitution are the low frequency modes, i.e., the
2 . 20202 “bu(ljky” rlnodes qf _Ionglg WIaV'EIet?gttr:LhThe higher frequder_wcg/
152/ 54\ 7— modes play a minimal role in both homogeneous and inho-
127 gaken fw/zn( 1=29z0dz= 3 2. (21 mogene%ug chains. Our model, then, doegs not really demon-
strate how energy is dissipated into heat, in which the energy
Equation (21) gives the leading term in the thermody- is more or less equally distributed among all the modes ac-
namic limit. The last expression is understood by first notingcording to the equipartition theorem. This ultimate arrange-
that the adiabatic limit, which we use to define a soft colli-ment of internal energy results only with inclusion of anhar-
sion, must be taken before the thermodynamic limit. Moremonic terms in the interparticle potential which would
specific to Eq.(21), this means thaf must be small com- couple the normal modes and allow energy to leak to higher
pared tok/n. This ensures that the collision interaction is frequency modes over time. However, at least at low colli-
slower than the lowest frequency vibrations; otherwise, thesion velocity for which anharmonicity is a small perturba-
use of perturbation theory is inappropriate. tion, the thermalization of internal energy can be viewed as
Equation(21) shows how elasticity is approached in the subsequent to the collision-induced energy rearrangement we
adiabatic limit(i.e., as¢?) while revealing the curious result investigate.
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